A Study on the NiVO₃ System

B. L. CHAMBERLAND

Department of Chemistry and Materials Science Institute, University of Connecticut, Storrs, Connecticut 06268

Received May 19, 1970

The reaction of NiO and VO₂ at high pressure yielded a distorted ilmenite phase, NiVO₃(I). The black crystalline product was characterized by crystallographic, electrical, and magnetic properties. This new phase was found to be a semiconductor and possess antiferromagnetic properties. The Neel temperature is 153°K and the moment corresponds to the valence states Ni²⁺V⁴⁺O₃. The properties of NiVO₃ are quite similar to those reported for the isostructural CoVO₃. A model is proposed which is consistent with the structural and magnetic properties.

Introduction

The characterization of CoVO₃ and CuVO₃ derivatives has recently been reported (1). These compounds, prepared at high pressure, were found to have the ilmenite or distorted ilmenite structure from single-crystal studies. Previous attempts (2) to prepare the NiVO₃ derivative were unsuccessful.

In this paper, we wish to report the preparation, crystallographic, magnetic, and electrical properties of the distorted ilmenite composition $NiVO_3(I)$, which is isostructural with $CoVO_3(I)$ and $CuVO_3(I)$.

Experimental

Vanadium dioxide V_2O_4 , was prepared by the solid-state reaction of V_2O_3 and V_2O_5 at 1000°C in an evacuated, fused-silica tube for 24 hr. Submicron nickel oxide powder (average particle size— 0.02μ) obtained from Vitro Laboratories was used as the main source of reactive nickel oxide. The reactants were mixed in an agate mortar and pestle, pelleted, and heated in an evacuated, fused silica tube at 1000°C for 26 hr to yield a highly sintered black crystalline mass. The X-ray powder pattern was suitably indexed on an orthorhombic basis: a = 8.240, b = 11.331, and c = 5.688Å. The elemental analyses gave:

- Calcd. for NiVO₃: V, 32.31; O, 30.45; V oxid. state, 4.00;
- Found: V, 32.42; O, 30.5, 31.1; V oxid. state, $3.97 \pm .02$.

This product was reground and heated at 60-65 kbars in a tetrahedral anvil (3) to 1400° C for 2 hr then quenched. Small black crystals of the distorted ilmenite NiVO₃(I) were obtained.

The Faraday magnetic data were obtained on a Cahn microbalance in the temperature region 77–298°K. The instrument was calibrated with HgCo(CNS)₄ as the standard. The observed susceptibilities were corrected for atomic diamagnetism. Four-probe electrical resistivity data were obtained on a single crystal from 77 to 298°K. The activation energy was derived from the slope in the log resistivity versus reciprocal temperature plot. The X-ray data were obtained with a Guinier powder camera using CuK α_1 radiation and a KCl internal standard.

Results

Single-crystal precession data approximated rhombohedral symmetry and the ilmenite space group, R3. The powder diffraction data, however, indicated lower symmetry than that of rhombohedral. Further examination of the single-crystal photographs showed triclinic symmetry with the possible space groups P1 or P1. The Guinier powder diffraction data was suitably indexed with the triclinic lattice dimensions: $a = 4.935 \pm 1$, $b = 5.377 \pm$ 1, $c = 4.903 \pm 1$ Å, $\alpha = 90.72 \pm 1$, $\beta = 119.13 \pm 1$, and $\gamma = 63.00 \pm 1^{\circ}$. The unit cell volume was 97.56 ± 5 Å³. The indexed powder data obtained on NiVO₃(I) is given in Table I. A slight trace of

CHAMBERLAND

TABLE I

POWDER DIFFRACTION DATA OF NiVO₃ (I)

h k l	I	dobsd	d _{calcd}
100	25	3.7007	3.7005
1 1 - 1	70	3.6271	3.6264
011	45	3.5922	3.5913
0 1 -1	60	2.7342	2.7338
-1 1 1	100	2.6732	2.6739
120	85	2.6674	2.6663
111	70	2.4893	2.4902
2 1 - 1	75	2.4667	2.4668
10-2	60	2.4507	2.4508
020	15	2.3076	2.3080
1 1 -2	45	2.1844	2.1840
2 2 -1	25	2.1652	2.1659
121	30	2.1620	2.1623
-1 1 2	10	2.1469	2.1457
220	10	2.0427	2.0427
-2 0 0	20	1.8499	1.8502
2 2 - 2	35	1.8132	1.8132
022	20	1.7961	1.7957
-1 1 -1	10	1.7220	1.7210
0 1 - 2	20	1.7196	1.7197
1 2 - 2	30	1.6983	1.6984
-2 1 1	30	1.6942	1.6946
2 3 -1	45	1.6765	1.6763
131	30	1.6657	1.6659
-1 2 2	35	1.6633	1.6626

unreacted NiO was detected in some of the powder patterns. The two structures, triclinic NiVO₃ and rhombohedral, ilmenite-type NiTiO₃, appear to be quite closely related. The two structural types were observed in the $CuVO_3$ system (1).

The magnetic and electrical resistivity results are given in Table II.

Discussion

The reaction of NiO and VO₂ at autogenous pressure and 1000°C in a sealed, evacuated system yields a heterogeneous phase which retains the

TΑ	BL	Æ	Π

ELECTRICAL AND MAGNETIC PROPERTIES OF NiVO₃(I)

Electrical properties	Magnetic properties
$\rho_{298^{\circ}K} = 9\Omega cm$	$\mu_{eff} = 3.36 \ \mu B$
$E_a = 0.20 \text{ eV}$	$\theta = -129.5^{\circ}\mathrm{K}$
	$T_N = 153 \pm 5^\circ \mathrm{K}$

overall proper stoichiometry and valence state for the composition $Ni^{2+}V^{4+}O_3$. X-ray studies show, however, that the principal crystalline phase is $Ni_3V_2O_8$ or $Ni_3(VO_4)_2$. This compound has previously been reported (4, 5). Structural investigations on $Ni_3V_2O_8$ were performed by Durif and Bertaut (6). The nickel vanadium oxide product isolated in this study is presumably formed through a redox reaction.

$$3NiO + 3VO_2 \rightarrow Ni_3V_2O_8 + VO_3$$

The overall nickel to vanadium ratio is retained and the average vanadium oxidation state in the combined product is $\{[(2 \times 5) + 2]/3 = 4.0\}$. The VO phase, possibly present as 15 wt % impurity, may have been formed in a subdivided or amorphous state and was, therefore, not detected in the diffraction pattern. Rüdorff et al. (2) noted that this autogenous pressure reaction yielded an unknown phase having some common lines with NiO and V_2O_3 . In this study we did not detect the presence of V_2O_3 or NiO in our autogenous pressure product but we noticed that the thermal decomposition of $NiVO_3(I)$ proceeds according to the following disproportionation reaction.

$$4NiVO_3 \rightarrow Ni_3V_2O_8 + NiO + V_2O_3$$

The X-ray diffraction pattern of the DTA residue (heated to 1000°C in dry nitrogen) was found to contain the orthorhombic $Ni_3V_2O_8$, NiO, and V_2O_3 phases in approximately equal amounts. No weight change was observed during the thermal treatment and decomposition stages.

The electrical properties of NiVO₃(I) indicate semiconducting behavior similar to that observed (1) for the triclinic CoVO₃(I) product. A slight change in slope appears at the Néel temperature and the activation energy below T_N is 0.10 eV.

The magnetic data show definite antiferromagnetic behavior with a minima in the reciprocal susceptibility vs T plot at 153° K, corresponding to the Néel temperature. Above this temperature the material obeys the Curie-Weiss law, having a Weiss constant of -130° K and a μ_{eff} of 3.36μ B. The calculated free-spin moment for Ni²⁺V⁴⁺O₃ is 3.32μ B, assuming a "g factor" of 2.00 for both $Ni^{2+}(d^8)$ and $V^{4+}(d^1)$. The magnetic properties of related Co and Ni compounds are summarized in Table III.

It should be noted that in the series NiMO₃, where $M^{4+} = Ti(d^0)$, $V(d^1)$, and $Mn(d^3)$, there is an increase in the two sublattice interactions giving rise to an increasing T_N , θ , and the ratio of θ to T_N .

A suitable model for $NiVO_3(I)$ can be derived by

5	2	2
2	4	5

Structure						
Compounds	cryst ^a	mag ^b	$T_N(^{\circ}\mathbf{K})$	<i>θ</i> (°K)	$- heta/T_N$	Reference
NiTiO ₃	ilm.	AF	23	-13	0.56	7, 8
NiVO ₃ (I)	dilm.	AF	153	-130	0.87	This work
NiCrO ₃	cor.	AF	250	-870	3.5	9
NiMnO ₃	ilm.	Fi	437	_	-	10
CoTiO ₃	ilm.	AF	38	-3	0.08	8
CoVO ₃ (I)	dilm.	AF	142	-22 ^c	0.15	1
CoMnO ₃	ilm.	Fi	391			10

TA	BL	E (III

MAGNETIC PROPERTIES OF NIMO3 AND COMO3 COMPOSITIONS

^a Crystal structure: ilm. = ilmenite; d.-ilm. = distorted-ilmenite; cor. = corundum.

^b Magnetic structure: AF = antiferromagentic; Fi-ferrimagnetic.

^c $\chi_{\rm M}$ was reevaluated and corrected for atomic diamagnetism, new $\mu_{\rm eff} = 5.53\mu$ B and the calculated $g_{\rm Co}^{2+} = 2.71$ assuming the "g factor" for V⁴⁺ is 2.00.

considering the various magnetic interactions in other NiMO₃ compositions. This same model should be applicable to the isostructural CoVO₃(I) system. The spin structure of NiVO₃ must necessarily be different from that of NiTiO₃ and NiMnO₃ since the former has only one paramagnetic ion in two antiferromagnetic sublattices and the latter, with two paramagnetic sublattices, is observed to possess ferrimagnetic interactions between the two different layer sequences.

The cation order in hexagonal closed packed ABO_3 structures is shown in Fig. 1. The structural and magnetic model proposed for the antiferromagnetic NiVO₃(I) system is shown in Fig. 2.

Each layer contains Ni^{2+} and V^{4+} ions (two sublattices) which order ferrimagnetically at the Néel temperature. A co-operative antiferromagnetic

effect between layers also arises at T_N and one observes only the overall antiferromagnetic spin ordering at this temperature. A similar magnetic model was proposed by J. B. Goodenough (12, 13) and G. Shirane *et al.* (14) for MTiO₃ compounds but was never actually observed in any of the systems investigated.

The triclinic distortion of the ilmenite could reasonably arise from $V^{4+}-V^{4+}$ coupling in alternate layers removing rhombohedral symmetry. A similar coupling is presumed to be responsible for the monoclinic distortion of the tetragonal rutile structure in vanadium dioxide below 65°C.

A complete structural determination of NiVO₃(I), CoVO₃(I). or CuVO₃(I) would be necessary to confirm the actual atom positions and the proposed coupling of alternate layers by homopolar V-V

FIG. 1. Three types of cation order found in ABO₃ compositions.

FIG. 2. Hexagonal representation of the proposed distorted and undistorted models for the transition metal ions and spin states in NiVO₃(I). Black circles represent Ni²⁺ ions while the white circles represent V⁴⁺ ions. The spin directions for a few ions are represented by arrows. The distortion in the structure arises from homopolar V⁴⁺ – V⁴⁺ bonds along the *c* axis of the hexagonal unit cell.

bonds, but all the observed properties are presently consistent with the proposed model. Syono, *et al.* (15) report the isolation of a similar high pressure, triclinic MnVO₃ phase which is ferromagnetic below 70° K.

Acknowledgments

The author wishes to thank Dr. C. W. Moeller for instructions on the Faraday balance and discussions of the magnetic results. The electrical resistivity measurements were carried out by Mr. J. L. Gillson and the single-crystal precession data were obtained by Miss M. S. Licis of the duPont Company.

References

- 1. B. L. CHAMBERLAND, J. Solid State Chem. 1, 138 (1970).
- W. RÜDORFF, G. WALTER, AND H. BECKER, Z. Anorg. Allg. Chem. 285, 287 (1956).
- 3. E. C. LLOYD, U. O. HUTTON, AND D. P. JOHNSON, J. Res. Nat. Bur. Stand. Sect. C 63, 59 (1959).
- 4. A. DITTE, C. R. Acad. Sci. 96, 1048 (1883).
- 5. C. BRISI, Ann. Chim. Rome 47, 806 (1957).
- 6. A. DURIF AND E. F. BERTAUT, J. Phys. Radium 20, 548 (1959).
- G. S. HELLER, J. J. STICKLER, S. KERN, AND A. WOLD, J. Appl. Phys. 34, 1033 (1963).
- J. J. STICKLER, S. KERN, A. WOLD, AND G. S. HELLER, Phys. Rev. 164, 765 (1967).
- 9. B. L. CHAMBERLAND AND W. H. CLOUD, J. Appl. Phys. 40, 434, (1969).
- T. J. SWOBODA, R. C. TOOLE, AND J. D. VAUGHAN, J. Phys. Chem. Solids 5, 293 (1958).
- 11. E. F. BERTAUT AND F. FORRAT, J. Appl. Phys. 29, 247 (1958).
- 12. J. B. GOODENOUGH, "Magnetism and the Chemical Bond," Fig. 18q, Type II, p. 95, Interscience Publ. Inc., New York, 1963.
- 13. J. B. GOODENOUGH, private communication.
- 14. G. SHIRANE, S. J. PICKART, AND Y. ISHIKAWA, J. Phys. Soc. Jap. 14, 1352 (1959).
- 15. Y. SYONO, S. AKIMOTO, AND Y. ENDOH, Tech. Report of ISSP, A 401 (1970).